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Biological context

The evolutionary conserved protein Sin3 mediates the
assembly of a large multi-protein complex involved in
modification of the local chromatin structure. Sin3 has
been shown to interact with a number of proteins, such
as HDAC, N-CoR, Sap30 and Mad1. Sin3 comprises
four repeats of approximately 80 amino acids, called
Paired Amphipathic-Helix (PAH) domains, that me-
diate the interactions of Sin3 with its partners. The
second PAH domain of Sin3A and -B has been shown
to specifically interact with the N-terminus of Mad1
(Mad1-SID, Sin3 Interaction Domain) (Ayer et al.,
1995; Eilers et al., 1999; Xu et al., 1999), a DNA-
binding protein that antagonizes the transcriptional
activation, proliferation-promotingand transformation
functions of the onco-protein Myc (Schreiber-Agus
et al., 1998; Foley et al., 1999).

Methods and experiments

The fragment containing the PAH2 domain (residues
148–252) of mouse Sin3B was obtained by PCR and
cloned into pGEX2T. Using site-directed mutagenesis,
the C241A mutation was introduced in the PAH2 do-
main to prevent disulphide-bridge mediated dimer for-
mation in solution. The resulting GST-PAH2(C241A)
fusion protein was expressed inE. coli strain pBL21
using 2×YT medium supplemented with 0.5% glu-
cose. Minimal medium was supplemented with13C6-
glucose and/or15N-nitrate where appropriate. Soluble
GST-PAH2 fusion protein was obtained after sonica-
tion in lysis buffer (1× PBS, 10 mM EDTA, 0.1 mg/ml
lysozyme, 1× complete protease inhibitor cocktail
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(Boehringer), 1 mM PMSF). DTT and Triton-X-100
were added after sonication to a final concentration
of 5 mM and 1%, respectively. After clearance of the
extract by centrifugation, GST-PAH2 was bound to a
glutathione-sepharose column and eluted with 10 mM
glutathione in 50 mM Tris-HCl pH 8.0, reduced as rec-
ommended by the manufacturer (Pharmacia). The elu-
ate was diluted fivefold with thrombin cleavage buffer
(20 mM Tris-HCl pH 8.5, 100 mM NaCl) and incu-
bated at 25◦C with thrombin (Sigma). Subsequently,
the PAH2 polypeptide was separated from the GST
moiety by repeating the gluthathione-sepharose col-
umn, and the flow-through fraction containing PAH2
was purified over a gel-filtration column (Pharmacia
S100) equilibrated with 50 mM NaPi-buffer pH 6.3,
dialyzed against water pH 6.3 and freeze-dried in
aliquots.

NMR samples of PAH2 complexed to the chem-
ically synthesised unlabelled 13-amino acid hMad1-
SID (denoted as PAH2-Mad1) contained 1–2 mM of
complex (1:1 stoichiometry) in 50 mM KPi-buffer
at pH 6.3. NMR samples of free PAH2 (denoted as
PAH2) contained 1 mM protein, 50 mM KPi-buffer at
pH 6.5 and 100 mM KCl. All NMR samples were pre-
pared in a H2O/D2O (95%/5%) mixture and contained
trace amounts of NaN3 as a preservative.

All NMR spectra were acquired at 20◦C on Var-
ian Inova 500, 750 MHz and Bruker DRX600 spec-
trometers. To obtain assignments 3D HNHA, HNCA,
HNCO, HN(CO)CA, HNCACB, CBCA(CO)NNH,
(H)CCH-TOCSY and HC(C)H-TOCSY experiments
were performed. Stereospecific assignments for pro-
chiral methyl groups of PAH2-Mad1 were obtained
using a sample containing 10%13C-labelled PAH2
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Figure 1. (A) Small regions of the1H-15N spectrum of PAH2 at 0 (left), 0.5 (middle), and 1 (right) equiv of hMad-SID peptide. (B) Chemical
shift differences between the free PAH2 and the PAH2-hMad1-SID complex. Shown are the values ofδcomplex− δfree for HN, 15N and13Cα

resonances as a function of residue number.

(Neri et al., 1989). Assignment of the hMad1-SID was
accomplished using 2D (13C/15N-filtered)-NOESY
and (13C/15N-filtered)-TOCSY spectra. Data process-
ing and analysis was done using NMRPipe (Delaglio
et al., 1995) and XEASY (Bartels et al., 1995),
respectively.

Figure 1A shows a small region of the15N-1H
HSQC spectra of the PAH2 domain at 0, 0.5, and 1
equiv of hMad1-SID peptide, respectively. The data
clearly show the disappearance of the cross peaks of
Ser54, Glu55, Gly68 and Asp71 in conjunction with
their appearance at new resonance positions, indica-
tive of a slow-exchange regime. Surface Plasmon
Resonance measurements also indicated tight binding
of hMad1-SID to PAH2 (Kd of < 3 ∗ 10−7). Compar-
ison of the chemical shifts of1HN, 15N, and13Cα in
the free and complexed forms allows for an indication
of the regions involved in binding of hMad1-SID. The
differences are largest for residues in the first, second
and fourth helices of PAH2 (Figure 1B), indicating
that these helices form the binding pocket for hMad1-
SID. Further details on the structure and interactions
in the complex are discussed elsewhere (Spronk et al.,
2000).

Extent of assignments and data deposition

The backbone of PAH2-Mad1 was assigned com-
pletely, except for the N- and C′-nuclei of the 3
prolines of PAH2. For the unlabelled hMad1-SID we

were able to perform a complete sequential assign-
ment of the HN and Hα resonances. Further,>85% of
the side chains of the PAH2 protein and the hMad-SID
peptide were assigned. For the free PAH2 complete
backbone and nearly complete (92%) Cβ assignments
were obtained. Data deposition numbers for assign-
ments of the complex and free PAH2 are BMRB-4841
and BMRB-4874, respectively.
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